Grounding Demystified

Importance Of Grounding Techniques

- Categories of solutions applied for compliance.
Ground Systems

- Grounding concepts take more time to understand than any other EMI concept because,
- Ground systems have diverse requirements and sometimes they appear conflicting.

Examples:
1. Can we connect signal ground to chassis?
2. Should you connect the cable shield to chassis?
3. You must avoid a Ground Loop.
What Is Grounding?

- Connecting all grounds in the system in a manner such that all of the objectives are met.
- What is ground?
 - Ground wire
 - Zero volts
 - Ground plane
 - Signal ground
 - Chassis ground
 - Conductive paint
 - A trace on PCB connecting chassis

Two Approaches to Limit the Noise

1. Stop the noise escaping the system
2. Stop at the circuit

- Often you use combination of the two.
Noise Generation In a Digital System

- In a digital system noise is generated by circuits.

Faraday Cage

- Faraday cage is the quiet RF reference.
- The chassis can be the Faraday cage if-
 1. It encloses the electronics.
 2. It is several times thicker than the skin depth.
 3. No conductor violates the Faraday cage.
 4. Large openings are avoided.
Chassis Ground

- A direct low impedance connection to chassis is important.
- A low cost approach is to use the mother board mounting pads.
- Capacitive connection can be made to the signal ground at several points if single point ground is to be maintained.
- The effective capacitor leads must be short.

Connection To Chassis

- Another economical way to make chassis connection is by means of connector body such as D connectors.
- DIN connectors are available with shield and spring contacts for easy and reliable contact to the chassis.
- Power line filter body should also be used for chassis connection.
Wave Propagation Through A Shield

- E_0 = Incident field strength
- R_1 = Reflection loss at B_1

 $= 20 \log (E_0 / E_1)$
- A = Absorption loss

 $= 20 \log (E_1 / E_2)$
- R_2 = Reflection loss at B_2

 $= 20 \log (E_2 / E_3)$
- Total shielding effectiveness

 $= E_0 / E_3$

$= R_1 \times A \times R_2 \times C_m$

Absorption Loss

- Absorption loss occurs due to induced currents
- The field decays with distance (d) traveled
- The decay is exponential, and is dependent on skin depth δ
- Skin depth depends on
 - μ = Permeability
 - σ = Conductivity
 - ω = Angular frequency of the wave

$\delta = \sqrt{2/(\mu \omega \sigma)}$
Grounding Considerations

- System performance: system must perform reliably.
- Safety of personnel: minimize electrical shock hazard.
- AF noise emissions and susceptibility.
- RF noise emissions and susceptibility.
- ESD immunity.

- Generally, the noise emission and noise susceptibility approaches are similar.

Grounding For Personnel Safety

- The main concern is that the metal enclosure remain at “safe” potentials.
- So it should be connected to the green wire ground of the power cord by “reliable” means.
Grounding For Safety

- Safety ground wire is connected to the chassis.
- EMI filter capacitors are limited by leakage current:
 - UL 1950 or IEC 950 - 3.5 mA
 - Medical devices - in micro-amps.

Ground Definitions --- Based on Purpose:

- General - Equipotential reference surface.
- EMC - Low effective impedance path for the return.
- ESD - Surface that can source or sink large amount of charge without changing its potential.
- Safety - Conductor providing a path for currents to flow during a circuit fault.
Ground Design Objectives For EMC

- Minimize Cross-talk.
- Minimize Emissions.
- Minimize Susceptibility.

- One must consider signal characteristics as well as allowable noise levels when designing a grounding scheme.

Ground System Considerations

- There are four important circuit characteristics to be considered during the design of ground system:

 1. Frequency of signal: Digital signal is broadband.
 2. Effective Impedance of path: not the resistance.
 3. Current Amplitude: The voltage drop is proportional to the signal current.
 4. Noise voltage threshold: The noise level that a circuit can withstand or generate.
Avoid a Ground Loop

- If a ground connects point A to B, it should not have an alternate path.

Ground Loop

- Definition: A ground circuit allowing ground currents to flow in a loop causing two problems.
 1. Induced noise voltage: magnetic coupling causes induced current resulting noise voltage.
 2. The return current may take a path further away from the signal current and create a radiating loop.

\[I_n = \text{Induced noise current} \]
\[V_n = \text{Noise voltage} \]
\[V_n = I_n \times R_s \]
Low Frequency Grounds
-Separated According to Circuit Noise Levels

- Chassis ground normally carries no current.
- This arrangement avoids ground loops.
- Noise coupling by conduction is avoided.
- Chassis is connected to power ground for safety.
- It carries current only in fault condition.

Typical Single Point Grounding
-for Low Frequency

- This grounding is inadequate for RF signals between the boards.
Ground Systems For Signal Currents

- Single point ground
 - Series or Parallel ground connection
- Multi-Point Ground
 - When signal spectrum contains high frequency energy.
- Multi-Point AC Ground
 - When low frequency and high frequency is present.

These ground systems are selected based on the frequency of signal and noise.

Series Ground Connection

- Question:
 - when do you connect ground in this manner?
• Q: When do you connect ground in your system in this manner?

Multi-point Ground Connection

• Definition: circuits are connected to a reference ground plane at several different points by low impedance connections.
• The low impedance, single reference ground replaces the SPG, when we add a ground plane on the PWB.
Problem With SPG

- With the SPG, the signal circuit has magnetic loop coupling:
 - These are formed by signal conductors and all ground paths returning through SPG. The coupling increases with frequency.

Solution

- Provide ground paths close to the signal connections.
- This parallel path can be: (a) Twisted conductor with each signal (b) coaxial cable shield or (c) a conductor in the ribbon cable.

- Should you worry about the ground loop? Not for RF designs.
What Is The Return Current Path?

- Choices:
 - Return current takes path of the lowest resistance.
 - Return current is distributed inversely proportional to the resistance of each path.
 - Return current takes path of the lowest impedance.

Return Current Division

- Current is divided: (1) shield and (2) ground plane.

Equivalent Circuit- Assuming ground resistance = 0
Single Point Or RF Grounding

- Grounding scheme is chosen according to requirements. The RF and AF requirements are not contradictory.

- When low (audio) frequency and high (RF) frequency protection is required, use multi-point AC ground with only one DC connection.

- Separate grounds according to signal levels - since induced noise can affect signal only if ground loop is part of the signal circuit.

Ground and Signal Go Together

- Keep ground with the signal when connecting different circuits.

- Ground is the return path for the signal and power current.

- This rule is very important - when we are breaking ground loop.
Transmission Line

- Distributed parameters, and characteristic Impedance.
- Reflections can be controlled by controlling the impedance.
- The transmission lines used in practice are not ideal. For example, the distributed parameters include resistors attenuating the propagating signal.

Layer Stacks For Four Layer PCB

- Would it help to put the ground layers on the outside surface?
- How useful are high frequency signals embedded into the ground and power planes?
Large Loops In Signal Return Paths

- Even with a ground plane in the PWB, a large loop in the signal path can exist.
- A return pin far away from signal pin will cause a loop.
- Large loops in signal return paths can be avoided by using distributed grounds.

Layout Near Board Edge

- Fringing near edge changes the characteristic impedance of the signal.
- This can result in ringing and additional radiation for high frequency signals.
- The advantages of the ground plane may be lost completely, if traces are laid outside the ground plane boundary.
Six Layer Board

- The ground layer is two and power plane is five.
- The distance between signal layers and the reference planes should be maintained constant, say X.
- The distance between layer three and four > 3X.

Summary

- Chassis ground is important for RF.
- Consider Signal loop more important than ground loop – look at ground as return path.
- Transmission line is your goal when you add ground and power planes on PCB.